Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
J Dent Educ ; 87(6): 825-842, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2275622

ABSTRACT

PURPOSE: To evaluate course directors' feedback on the assessment methods used during the coronavirus disease 2019 (COVID-19) pandemic and identify effective approaches for future assessments in dental education. METHODS: Course directors at the US dental schools were surveyed for changes in assessments implemented during the early stages of the pandemic (March-July 2020) using the Qualtrics platform. The survey questions addressed assessment methods utilized in didactic, preclinical, and clinical arenas pre-COVID-19 (before March 2020) and during the early phase of the pandemic (between March and July 2020) and identified any sustained changes in assessments post-COVID-19. Of the 295 responses for the type of courses directed, 48%, 22%, and 30% responses were for didactic, pre-clinical, and clinical assessments, respectively. Chi-square tests and 95% confidence intervals were used to assess quantitative differences. RESULTS: Computer-based un-proctored and remote- proctored assessments increased whereas paper-based in-person proctored assessments decreased during an early pandemic. For pre-clinical and clinical courses, objective-structured clinical exams and case-based assessments increased whereas, for didactic courses, the number of presentations, short-answer, and multiple-choice questions-based assessments increased. Specimen-based assessments and patient-based encounters decreased significantly in didactic and clinical courses, respectively. Manikin-based exams increased in clinical but not in pre-clinical courses. Survey respondents disagreed that alternative assessments helped students learn better, resulted in better course evaluations, or were an equivalent replacement for pre-COVID-19 assessments. Interestingly, 49% of respondents indicated a likelihood of continuing alternative assessments whereas 36% were unlikely and 15% were neutral. CONCLUSIONS: A combination of effective pre-pandemic and innovative alternative assessments developed during the pandemic may be the new normal in the dental education curriculum.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , Schools, Dental , Pandemics , Curriculum , Students
2.
Med Sci Educ ; 33(1): 147-156, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2175370

ABSTRACT

Purpose: Virtual instruction became the primary educational delivery method for pre-clerkship medical students during the COVID-19 pandemic. The aims of this study were to evaluate the effectiveness of a virtual and blended pre-clerkship curriculum and to assess its impact on students. Methods: We surveyed 223 1st- and 2nd-year medical students (MS1s and MS2s) enrolled at the Paul L Foster School of Medicine. We analyzed student satisfaction with their courses, along with summative exam scores, compared to previous academic years. Results: The survey was completed by 125 of 223 students (56%). Most students changed their study methods (78%), experienced technical issues (85%), and had difficulty communicating with faculty (62%). MS1s were significantly more likely than MS2s to report difficulty in adjusting to virtual instruction (p = 0.037) and a negative impact on their learning skills (p = 0.005) and academic performance (p = 0.003). Students reported the virtual environment negatively affected their social skills (77%), connectedness to peers (89%), and professional development (62%). MS1s were more likely than MS2s to perceive a negative effect on their sense of wellness (p = 0.002). The overall satisfaction with the courses was similar to previous academic years. Student performance in the summative examination of the first virtually delivered unit was lower (p = 0.007) than the previous year's cohorts. Conclusion: The difference in MS1s and MS2s perceptions of virtual and blended instruction highlights the importance of face-to-face learning during the first year. Benefits and drawbacks were identified which may help inform educators when designing future learning models. Supplementary Information: The online version contains supplementary material available at 10.1007/s40670-022-01723-6.

3.
Adv Exp Med Biol ; 1397: 1-19, 2023.
Article in English | MEDLINE | ID: covidwho-2157987

ABSTRACT

The undergraduate medical programme at Newcastle University (NU) includes a fundamental 'Essentials of Medical Practice' (EOMP) phase comprising the first 2 years of study. This period is designed to support entrants in their transition from further education into the advanced study and practice of clinical medicine. The anatomical sciences of gross anatomy, histology and embryology, and life sciences including physiology, pharmacology and genetics are key disciplines taught within the integrated case-based EOMP curriculum. Learners apply basic science knowledge to clinical scenarios during training in practical examination, communication and reasoning skills. Within the modern pedagogic landscape, the development and introduction of technology-enhanced learning strategies have enhanced the provision of remote learning resources in pre-clinical education. However, the emergence of COVID-19 has resulted in widespread technological challenges for educators and learners, and has raised pedagogic, logistical and ethical concerns. Nonetheless, the pandemic has produced favourable conditions for the creation of valuable digital visualisation strategies for learning and teaching, and for developing and modernising universal approaches to remote education. Here, we describe our technology-enhanced adaptations to COVID-19 across the domains of teaching, learning and academic support for pre-clinical learners studying basic life sciences and clinical skills. Moreover, we outline research-informed digital visualisation solutions to pandemic-era challenges and reflect upon experiences gained within our own educational context. In doing so, we provide insights into the impacts and successes of our interventions. While providing a record of unprecedented contemporary circumstances, we also aim to utilise our observations and experiences of COVID-19 pedagogy when developing ongoing strategies for delivering curricula and futureproofing educational practice.


Subject(s)
COVID-19 , Education, Medical, Undergraduate , Humans , Pandemics , COVID-19/epidemiology , Curriculum , Education, Medical, Undergraduate/methods , Learning
4.
BMC Med Educ ; 22(1): 813, 2022 Nov 28.
Article in English | MEDLINE | ID: covidwho-2139262

ABSTRACT

BACKGROUND: The lack of interaction and communication in pharmacology courses, especially since the onset of the coronavirus disease 2019 (COVID-19) pandemic, which required a fast shift to remote learning at medical schools, leads to an unsatisfactory learning outcome. New interactive teaching approaches are required to improve pharmacology learning attention and interaction in remote education and traditional classrooms. METHODS: We introduced bullet screens to pharmacology teaching. Then, a survey was distributed to first-, second- and third-year pre-clinical undergraduate medical and nursing students at the Shanghai Jiao Tong University School of Medicine from November 2020 to March 2022. We evaluated the essential features, instructional effectiveness, and entertainment value of bullet screens. Responses to structured and open-ended questions about the strengths and weaknesses of the bullet screen and overall thoughts were coded and compared between medical and nursing students. RESULTS: In terms of essential features, bullet screens have a high degree of acceptability among students, and this novel instructional style conveniently increased classroom interaction. Considering instructional effectiveness, bullet screen may stimulate students' in-depth thinking. Meanwhile, students tended to use bullet-screen comments as a way to express their support rather than to make additional comments or to express their different viewpoints. The entertainment value of bullet screen was noteworthy. The lack of ideas might lead to relative differences between medical and nursing students, indicating that guiding the appropriate use of bullet screen is necessary. CONCLUSIONS: The bullet screen may be popularized as an auxiliary teaching approach to promote interaction between teachers and students in the classroom as well as during remote education. It is an interesting and beneficial tool in pharmacology courses, yet there are several aspects of this device that should be improved for popularization.


Subject(s)
Education, Medical, Undergraduate , Pharmacology , Humans , China , COVID-19 , Medicine , Schools, Medical , Pharmacology/education
5.
Med (N Y) ; 3(10): 705-721.e11, 2022 10 14.
Article in English | MEDLINE | ID: covidwho-2076532

ABSTRACT

BACKGROUND: The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern, in particular the newly emerged Omicron (B.1.1.529) variant and its BA.X lineages, has rendered ineffective a number of previously FDA emergency use authorized SARS-CoV-2 neutralizing antibody therapies. Furthermore, those approved antibodies with neutralizing activity against Omicron BA.1 are reportedly ineffective against the subset of Omicron subvariants that contain a R346K substitution, BA.1.1, and the more recently emergent BA.2, demonstrating the continued need for discovery and characterization of candidate therapeutic antibodies with the breadth and potency of neutralizing activity required to treat newly diagnosed COVID-19 linked to recently emerged variants of concern. METHODS: Following a campaign of antibody discovery based on the vaccination of Harbor H2L2 mice with defined SARS-CoV-2 spike domains, we have characterized the activity of a large collection of spike-binding antibodies and identified a lead neutralizing human IgG1 LALA antibody, STI-9167. FINDINGS: STI-9167 has potent, broad-spectrum neutralizing activity against the current SARS-COV-2 variants of concern and retained activity against each of the tested Omicron subvariants in both pseudotype and live virus neutralization assays. Furthermore, STI-9167 nAb administered intranasally or intravenously provided protection against weight loss and reduced virus lung titers to levels below the limit of quantitation in Omicron-infected K18-hACE2 transgenic mice. CONCLUSIONS: With this established activity profile, a cGMP cell line has been developed and used to produce cGMP drug product intended for intravenous or intranasal use in human clinical trials. FUNDING: Funded by CRIPT (no. 75N93021R00014), DARPA (HR0011-19-2-0020), and NCI Seronet (U54CA260560).


Subject(s)
Antibodies, Neutralizing , COVID-19 Drug Treatment , Administration, Intranasal , Animals , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/therapeutic use , Humans , Immunoglobulin G , Membrane Glycoproteins , Mice , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
6.
Vaccines (Basel) ; 10(10)2022 Sep 26.
Article in English | MEDLINE | ID: covidwho-2044050

ABSTRACT

Since early 2020, the entire world has been facing a disastrous outbreak of the SARS-CoV-2 virus, with massive reporting of death and infections per day. Medical practitioners adopted certain measures such as convalescent plasma therapy, antibody treatment, and injecting vaccines to eradicate the pandemic. In this review, we have primarily focused on the neutralizing antibodies presently under pre-clinical and clinical trials, focusing on their structures, binding affinity, mechanism of neutralization, and advantages over other therapeutics. We have also enlisted all the nAbs against SARS-CoV-2 and its emerging variants in different phases of clinical trials (phase-1, phase-II, and phase-III). The efficacy of administering antibody cocktails over the normal antibodies and their efficacy for the mutant variants of the SARS-CoV-2 virus in minimizing viral virulence is discussed. The potent neutralizing antibodies have eliminated many of the common problems posed by several other therapeutics. A common mechanism of the antibodies and their relevant sources have also been listed in this review.

7.
Front Mol Neurosci ; 15: 912146, 2022.
Article in English | MEDLINE | ID: covidwho-1993807

ABSTRACT

Behavioral neuroscience tests such as the Light/Dark Test, the Open Field Test, the Elevated Plus Maze Test, and the Three Chamber Social Interaction Test have become both essential and widely used behavioral tests for transgenic and pre-clinical models for drug screening and testing. However, as fast as the field has evolved and the contemporaneous involvement of technology, little assessment of the literature has been done to ensure that these behavioral neuroscience tests that are crucial to pre-clinical testing have well-controlled ethological motivation by the use of lighting (i.e., Lux). In the present review paper, N = 420 manuscripts were examined from 2015 to 2019 as a sample set (i.e., n = ~20-22 publications per year) and it was found that only a meager n = 50 publications (i.e., 11.9% of the publications sampled) met the criteria for proper anxiogenic and anxiolytic Lux reported. These findings illustrate a serious concern that behavioral neuroscience papers are not being vetted properly at the journal review level and are being released into the literature and public domain making it difficult to assess the quality of the science being reported. This creates a real need for standardizing the use of Lux in all publications on behavioral neuroscience techniques within the field to ensure that contributions are meaningful, avoid unnecessary duplication, and ultimately would serve to create a more efficient process within the pre-clinical screening/testing for drugs that serve as anxiolytic compounds that would prove more useful than what prior decades of work have produced. It is suggested that improving the standardization of the use and reporting of Lux in behavioral neuroscience tests and the standardization of peer-review processes overseeing the proper documentation of these methodological approaches in manuscripts could serve to advance pre-clinical testing for effective anxiolytic drugs. This report serves to highlight this concern and proposes strategies to proactively remedy them as the field moves forward for decades to come.

8.
EBioMedicine ; 82: 104148, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1991004

ABSTRACT

BACKGROUND: To address the emergence of SARS-CoV-2, multiple clinical trials in humans were rapidly started, including those involving an oral treatment by nitazoxanide, despite no or limited pre-clinical evidence of antiviral efficacy. METHODS: In this work, we present a complete pre-clinical evaluation of the antiviral activity of nitazoxanide against SARS-CoV-2. FINDINGS: First, we confirmed the in vitro efficacy of nitazoxanide and tizoxanide (its active metabolite) against SARS-CoV-2. Then, we demonstrated nitazoxanide activity in a reconstructed bronchial human airway epithelium model. In a SARS-CoV-2 virus challenge model in hamsters, oral and intranasal treatment with nitazoxanide failed to impair viral replication in commonly affected organs. We hypothesized that this could be due to insufficient diffusion of the drug into organs of interest. Indeed, our pharmacokinetic study confirmed that concentrations of tizoxanide in organs of interest were always below the in vitro EC50. INTERPRETATION: These preclinical results suggest, if directly applicable to humans, that the standard formulation and dosage of nitazoxanide is not effective in providing antiviral therapy for Covid-19. FUNDING: This work was supported by the Fondation de France "call FLASH COVID-19", project TAMAC, by "Institut national de la santé et de la recherche médicale" through the REACTing (REsearch and ACTion targeting emerging infectious diseases), by REACTING/ANRS MIE under the agreement No. 21180 ('Activité des molécules antivirales dans le modèle hamster'), by European Virus Archive Global (EVA 213 GLOBAL) funded by the European Union's Horizon 2020 research and innovation program under grant agreement No. 871029 and DNDi under support by the Wellcome Trust Grant ref: 222489/Z/21/Z through the COVID-19 Therapeutics Accelerator".


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cricetinae , Humans , Nitro Compounds , Thiazoles
9.
Telemed Rep ; 2(1): 233-238, 2021.
Article in English | MEDLINE | ID: covidwho-1901071

ABSTRACT

Purpose: The COVID-19 pandemic limited pre-clinical medical students from participating in traditional clinical in-person shadowing. Rather than eliminating clinical shadowing from an established leadership course, we describe the experience of six pre-clinical medical students shadowing physician preceptors remotely through virtual platforms. Methods: Six pre-clinical medical students enrolled in 2020's Weill Cornell Medicine's Healthcare Leadership and Management Scholars Program were prepared with training materials for on-camera patient care. Students shadowed emergency medicine (EM) physicians providing clinical care in one of our New York Presbyterian emergency departments (EDs) and through telemedicine. Pre- and postsurveys were provided to these students. Results: From three different U.S. time zones, students were safely able to shadow EM physicians. The educational fidelity was maintained in physician-student relationships, but revealed opportunities for improvement in students' clinical learning, in ED clinical care, and in telemedicine visits. Conclusions: Virtual clinical shadowing is a viable option for pre-clinical students, when in-person options are not available. With logistical adjustments, this medium may be a long-term educational option especially for telemedicine.

10.
EBioMedicine ; 80: 104062, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1899688

ABSTRACT

BACKGROUND: There is an urgent need of a new generation of vaccine that are able to enhance protection against SARS-CoV-2 and related variants of concern (VOC) and emerging coronaviruses. METHODS: We identified conserved T- and B-cell epitopes from Spike (S) and Nucleocapsid (N) highly homologous to 38 sarbecoviruses, including SARS-CoV-2 VOCs, to design a protein subunit vaccine targeting antigens to Dendritic Cells (DC) via CD40 surface receptor (CD40.CoV2). FINDINGS: CD40.CoV2 immunization elicited high levels of cross-neutralizing antibodies against SARS-CoV-2, VOCs, and SARS-CoV-1 in K18-hACE2 transgenic mice, associated with viral control and survival after SARS-CoV-2 challenge. A direct comparison of CD40.CoV2 with the mRNA BNT162b2 vaccine showed that the two vaccines were equally immunogenic in mice. We demonstrated the potency of CD40.CoV2 to recall in vitro human multi-epitope, functional, and cytotoxic SARS-CoV-2 S- and N-specific T-cell responses that are unaffected by VOC mutations and cross-reactive with SARS-CoV-1 and, to a lesser extent, MERS epitopes. INTERPRETATION: We report the immunogenicity and antiviral efficacy of the CD40.CoV2 vaccine in a preclinical model providing a framework for a pan-sarbecovirus vaccine. FUNDINGS: This work was supported by INSERM and the Investissements d'Avenir program, Vaccine Research Institute (VRI), managed by the ANR and the CARE project funded from the Innovative Medicines Initiative 2 Joint Undertaking (JU).


Subject(s)
COVID-19 , Viral Vaccines , Animals , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics
11.
Biomedicines ; 10(5)2022 Apr 21.
Article in English | MEDLINE | ID: covidwho-1875474

ABSTRACT

Sex differences identified in the COVID-19 pandemic are necessary to study. It is essential to investigate the efficacy of the drugs in clinical trials for the treatment of COVID-19, and to analyse the sex-related beneficial and adverse effects. The histone deacetylase inhibitor valproic acid (VPA) is a potential drug that could be adapted to prevent the progression and complications of SARS-CoV-2 infection. VPA has a history of research in the treatment of various viral infections. This article reviews the preclinical data, showing that the pharmacological impact of VPA may apply to COVID-19 pathogenetic mechanisms. VPA inhibits SARS-CoV-2 virus entry, suppresses the pro-inflammatory immune cell and cytokine response to infection, and reduces inflammatory tissue and organ damage by mechanisms that may appear to be sex-related. The antithrombotic, antiplatelet, anti-inflammatory, immunomodulatory, glucose- and testosterone-lowering in blood serum effects of VPA suggest that the drug could be promising for therapy of COVID-19. Sex-related differences in the efficacy of VPA treatment may be significant in developing a personalised treatment strategy for COVID-19.

12.
Exploration of Medicine ; 3(1):1-21, 2022.
Article in English | Scopus | ID: covidwho-1848162

ABSTRACT

Aim: Isolated specific glycone–aglycone conjugated flavonoids which are investigated for their effect of bioavailability and molecular concentrations. The specific formula is then tested via in vitro and in vivo cytotoxicity tests. Methods: Considering the higher affinity for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), quercetin, quercetin 3-sambubioside-3’-glucoside, luteolin, apigenin-7-4’alloside, kaempferol-7-O-glucoside, epicatechin-epigallocatechin-3-O-gallate, and hesperetin were selected to investigate the effects of a new combination of the formula. Specific chemical analyses, such as high-performance liquid chromatography (HPLC), liquid chromatography–mass spectrometry (LC–MS), quadrupole time of flight mass spectrometry (QTÖF–MS) analysis and ultraviolet–visible (UV–VIS) spectrophotometry, were performed for molecular qualification and quantification. Results: In silico molecular docking analyses have shown that flavonoids can bind strongly to the spike protein and main protease of the SARS-CoV-2 virus. Flavonoids also have anti-inflammatory and immune-modulating activity by inhibiting cytokines. Although flavonoids may be a treatment alternative for coronavirus disease 2019 (CÖVID-19), an effective flavonoid compound has yet to be developed. The main problem here is that the absorption rate of flavonoids is very low (2–10%) in the intestines, and these compounds are metabolized rapidly. In contrast, according to recent literature, a conjugated flavonoid mixture is better absorbed in the small intestine, and its toxic effects are relatively fewer. Conclusions: It is found that the new formula has no cytotoxic or genotoxic effects. Furthermore, oral administrations of the new compound did not produce any toxicity symptoms or any mortality in male and female rats. The pre-clinical in vitro and in vivo toxicity test results indicated that the new flavonoid formula can be safely used for clinical trials. © The Author(s) 2022.

13.
Biomed Pharmacother ; 149: 112872, 2022 May.
Article in English | MEDLINE | ID: covidwho-1814159

ABSTRACT

INTRODUCTION: Identifying effective drugs for Coronavirus disease 2019 (COVID-19) is urgently needed. An efficient approach is to evaluate whether existing approved drugs have anti-SARS-CoV-2 effects. The antiviral properties of lithium salts have been studied for many years. Their anti-inflammatory and immune-potentiating effects result from the inhibition of glycogen synthase kinase-3. AIMS: To obtain pre-clinical evidence on the safety and therapeutic effects of lithium salts in the treatment of COVID-19. RESULTS: Six different concentrations of lithium, ranging 2-12 mmol/L, were evaluated. Lithium inhibited the replication of SARS-CoV-2 virus in a dose-dependent manner with an IC50 value of 4 mmol/L. Lithium-treated wells showed a significantly higher percentage of monolayer conservation than viral control, particularly at concentrations higher than 6 mmol/L, verified through microscopic observation, the neutral red assay, and the determination of N protein in the supernatants of treated wells. Hamsters treated with lithium showed less intense disease with fewer signs. No lithium-related mortality or overt signs of toxicity were observed during the experiment. A trend of decreasing viral load in nasopharyngeal swabs and lungs was observed in treated hamsters compared to controls. CONCLUSIONS: These results provide pre-clinical evidence of the antiviral and immunotherapeutic effects of lithium against SARS-CoV-2, which supports an advance to clinical trials on COVID-19's patients.


Subject(s)
COVID-19 Drug Treatment , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Cricetinae , Humans , Lithium , SARS-CoV-2 , Salts
14.
J Clin Neurosci ; 100: 23-32, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1799811

ABSTRACT

Traumatic brain injury can have devastating consequences for patients and extended hospital stays and recovery course. Recent data indicate that the initial insult causes profound changes to the immune system and leads to a pro-inflammatory state. This alteration in homeostasis predisposes patients to an increased risk of infection and underlying autoimmune conditions. Increased emphasis has been placed on understanding this process both in the clinical and preclinical literature. This review highlights the intrinsic inflammatory conditions that can occur within the initial hospital stay, discusses long-term immune consequences, highlights emerging treatment options, and delves into important pathways currently being investigated with preclinical models.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/therapy , Humans , Inflammation/complications
15.
Med (N Y) ; 3(5): 309-324.e6, 2022 05 13.
Article in English | MEDLINE | ID: covidwho-1796324

ABSTRACT

BACKGROUND: Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019, viral variants with greater transmissibility or immune-evasion properties have arisen, which could jeopardize recently deployed vaccine- and antibody-based countermeasures. METHODS: Here, we evaluated in mice and hamsters the efficacy of a pre-clinical version of the Moderna mRNA vaccine (mRNA-1273) and the Johnson & Johnson recombinant adenoviral-vectored vaccine (Ad26.COV2.S) against the B.1.621 (Mu) variant of SARS-CoV-2, which contains spike mutations T95I, Y144S, Y145N, R346K, E484K, N501Y, D614G, P681H, and D950N. FINDINGS: Immunization of 129S2 and K18-human ACE2 transgenic mice with the mRNA-1273 vaccine protected against weight loss, lung infection, and lung pathology after challenge with the B.1.621 or WA1/2020 N501Y/D614G SARS-CoV-2 strain. Similarly, immunization of 129S2 mice and Syrian hamsters with a high dose of Ad26.COV2.S reduced lung infection after B.1.621 virus challenge. CONCLUSIONS: Thus, immunity induced by the mRNA-1273 or Ad26.COV2.S vaccine can protect against the B.1.621 variant of SARS-CoV-2 in multiple animal models. FUNDING: This study was supported by the NIH (R01 AI157155 and U01 AI151810), NIAID Centers of Excellence for Influenza Research and Response [CEIRR] contracts 75N93021C00014 and 75N93021C00016, and the Collaborative Influenza Vaccine Innovation Centers [CIVIC] contract 75N93019C00051. It was also supported, in part, by the National Institutes of Allergy and Infectious Diseases Center for Research on Influenza Pathogenesis (HHSN272201400008C) and the Japan Program for Infectious Diseases Research and Infrastructure (JP21wm0125002) from the Japan Agency for Medical Research and Development (AMED).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Influenza, Human , mRNA Vaccines , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/pharmacology , Ad26COVS1 , Animals , Antibodies, Neutralizing , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , Cricetinae , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , mRNA Vaccines/immunology , mRNA Vaccines/pharmacology
16.
2021 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems, COMCAS 2021 ; : 63-65, 2021.
Article in English | Scopus | ID: covidwho-1672592

ABSTRACT

Evaluation of myocardial function is critical in severe inflammations as myocarditis, COVID-19 and sepsis, since it can lead to organ failure and death. Point-of-care detection of myocardial injury may improve the treatment of these critically ill patients. The study aimed to develop point of care technology for assessing the systolic and diastolic cardiac functions in animal model of systemic inflammation. Ultrasound and ventricular pressure were continuously recorded in Langendorff perfused isolated adult rat hearts. A computer controlled system controlled the ventricle loading conditions. The preload of both ventricles swung in a sinusoidal manner between target values of 2 and 22 mmHg. Collagenase (MMP8) was added to the Krebs-Henseleit solution following baseline recordings, to emulate the release of MMPs from activated leukocytes and macrophages. Collagenase perfusion led to gradual decline in peak systolic pressure and decrease in the end-diastolic volume (EDV), that were associated with concentric myocardial wall thickening. Extracellular matrix degradation by collagenases caused sever diastolic dysfunction with overt shift of the end-diastolic volume toward lower volumes, without significant changes in the epicardial diameter. Early detection of these signs may assist in assessing the severity of the myocardial injury and prompt the adequate treatment. © 2021 IEEE.

17.
Biochem Mol Biol Educ ; 50(1): 124-129, 2022 01.
Article in English | MEDLINE | ID: covidwho-1567964

ABSTRACT

The emergence of Corona Virus Disease-2019 (COVID-19) pandemic had unprecedented effects on medical education worldwide. Sustaining student engagement in virtual learning is an arduous task. Team based learning (TBL) is a learner-centered approach that can facilitate better student engagement. Adapting TBL to online platform may address the challenges faced in virtual learning. This study was conducted to implement and evaluate online TBL among first year MBBS students in Biochemistry. After obtaining informed consent, three online TBL sessions were planned. The Individual Readiness Assessment Test, Group Readiness Assessment Test, and team application were assigned in Google classroom. The students used online platforms for their team interactions. After submitting their assignments, they joined online discussion with facilitator. Peer evaluation was done via Google forms. At the end of all the sessions, the students' perceptions on the process were collected using a structured anonymous feedback with open comments. Analysis of their feedback showed that the students found the process useful and it helped in fostering their team skills. Five major themes emerged on content analysis of the open comments; 'Enriched team skills', 'Gain in knowledge', 'Impact on attitude', 'Interaction during pandemic', and 'Emotional responses'. Students perceived that the online TBL is effective in improving their engagement, learning, and team skills.


Subject(s)
COVID-19 , Education, Distance , Educational Measurement , Group Processes , Humans , Pandemics/prevention & control , Problem-Based Learning , SARS-CoV-2 , Students
18.
Med Sci Educ ; 31(6): 1895-1901, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1401118

ABSTRACT

OBJECTIVES: To assess student outcomes and experiences, as well as preceptor experiences, after emergently converting a preclinical medical school renal course to a remote setting during the COVID-19 pandemic. METHODS: First-year medical student examination scores and responses to Likert-scale questions on end-of-course evaluations from the 2018-2019 (traditional) and 2019-2020 (remote) academic years were compared. Free-text responses from students and preceptors were analyzed using a qualitative summative approach to extract major themes in perceptions of remote learning. RESULTS: Mean student scores on course examinations did not significantly differ between the traditional and remote settings (p = 0.23 and 0.84 respectively). Quantitative analysis of student evaluations revealed no significant difference across all items in mean Likert-scale responses. Student and preceptor free-text responses identified course leader engagement and responsiveness as essential to the success of remote-based learning. Optimal group size and online etiquette are areas that require attention. CONCLUSIONS: Despite rapid conversion of a preclinical medical school renal course to a remote-based format in the setting of the COVID-19 pandemic, student scores and evaluations remain positive and largely unchanged.

19.
Med (N Y) ; 2(6): 773-783.e5, 2021 06 11.
Article in English | MEDLINE | ID: covidwho-1230668

ABSTRACT

BACKGROUND: Several aquatic organisms such as loaches have evolved unique intestinal breathing mechanisms to survive under extensive hypoxia. To date, it is highly controversial whether such capability can be adapted in mammalian species as another site for gas exchange. Here, we report the advent of the intestinal breathing phenomenon in mammalians by exploiting EVA (enteral ventilation via anus). METHODS: Two different modes of EVA were investigated in an experimental model of respiratory failure: intra-rectal oxygen O2 gas ventilation (g-EVA) or liquid ventilation (l-EVA) with oxygenated perfluorocarbon. After induction of type 1 respiratory failure, we analyzed the effectiveness of g-EVA and I-EVA in mouse and pig, followed by preclinical safety analysis in rat. FINDINGS: Both intra-rectal O2 gas and oxygenated liquid delivery were shown to provide vital rescue of experimental models of respiratory failure, improving survival, behavior, and systemic O2 level. A rodent and porcine model study confirmed the tolerable and repeatable features of an enema-like l-EVA procedure with no major signs of complications. CONCLUSIONS: EVA has proven effective in mammalians such that it oxygenated systemic circulation and ameliorated respiratory failure. Due to the proven safety of perfluorochemicals in clinics, EVA potentially provides an adjunctive means of oxygenation for patients under respiratory distress conditions. FUNDING: This work is funded by the Research Program on Emerging and Re-emerging Infectious Diseases, Research Projects on COVID-19 (JP20fk0108278, 20fk0108506h0001), from the Japan Agency for Medical Research and Development (AMED), to T.T.; Strategic Promotion for Practical Application of Innovative Medical Technology, Seeds A (A145), to T.T.; and KAKENHI 19K22657, to T.C.-Y. This research is partially supported by the AMED Translational Research Program; Strategic Promotion for Practical Application of Innovative Medical Technology (TR-SPRINT), to T.C.-Y.; and AMED JP18bm0704025h0001 (Program for Technological Innovation of Regenerative Medicine), to T.T.


Subject(s)
COVID-19 , Respiratory Insufficiency , Animals , Humans , Lung , Mammals , Mice , Oxygen , Rats , Respiration , Respiration, Artificial/methods , Respiratory Insufficiency/therapy , Swine
20.
EBioMedicine ; 66: 103291, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1163667

ABSTRACT

Many milestones in medical history rest on animal modeling of human diseases. The SARS-CoV-2 pandemic has evoked a tremendous investigative effort primarily centered on clinical studies. However, several animal SARS-CoV-2/COVID-19 models have been developed and pre-clinical findings aimed at supporting clinical evidence rapidly emerge. In this review, we characterize the existing animal models exposing their relevance and limitations as well as outline their utility in COVID-19 drug and vaccine development. Concurrently, we summarize the status of clinical trial research and discuss the novel tactics utilized in the largest multi-center trials aiming to accelerate generation of reliable results that may subsequently shape COVID-19 clinical treatment practices. We also highlight areas of improvement for animal studies in order to elevate their translational utility. In pandemics, to optimize the use of strained resources in a short time-frame, optimizing and strengthening the synergy between the preclinical and clinical domains is pivotal.


Subject(s)
COVID-19 Drug Treatment , COVID-19 Vaccines , COVID-19/etiology , Disease Models, Animal , SARS-CoV-2/genetics , Age Factors , Animals , Antiviral Agents/pharmacology , COVID-19/physiopathology , COVID-19/therapy , COVID-19 Vaccines/pharmacology , Clinical Trials as Topic , Cricetinae , Ferrets , Humans , Mice , Mutation , Primates
SELECTION OF CITATIONS
SEARCH DETAIL